Abstract

The chloroplast is the most prominent and metabolically active plastid in photosynthetic plants. Chloroplasts differentiate from proplastids in the plant meristem. Plant plastids contain multiple copies of a small circular genome. The numbers of chloroplasts per mesophyll cell and of plastid genome copies are affected by developmental stage and environmental signals. We compared chloroplast structure, gene expression and genome copy number in Arabidopsis seedlings germinated and grown under optimal conditions to those in seedlings germinated and grown in the presence of NaCl. Chloroplasts of the NaCl-grown seedlings were impaired, with less developed thylakoid and granum membranes than control seedlings. In addition, chloroplasts of salt-grown Arabidopsis seedlings accumulated more starch grains than those in the respective control plants. Steady-state transcript levels of chloroplast-encoded genes and of nuclear genes encoding chloroplast proteins were reduced in salt-grown seedlings. This reduction did not result from a global decrease in gene expression, since the expression of other nuclear genes was induced or not affected. Average cellular chloroplast genome copy number was reduced in salt-grown seedlings, suggesting that the reduction in steady-state transcript levels of chloroplast-encoded genes might result from a decrease in template DNA.

Highlights

  • Salt stress is a major abiotic stress that limits plant growth and productivity worldwide [1]

  • Photosynthesis is one of the primary cellular activities affected by salt stress [3]

  • The chloroplast is one of the primary organelles affected by salt stress

Read more

Summary

Introduction

Salt stress is a major abiotic stress that limits plant growth and productivity worldwide [1]. Plants exposed to salt stress respond with global changes in cellular activity, including physiological and molecular changes, one of the main effects being stomatal closure. Photosynthesis is one of the primary cellular activities affected by salt stress [3]. The chloroplast is one of the primary organelles affected by salt stress. This results in a decrease in carbon-fixation rates, concomitant with reactive oxygen species production. Most studies on the impact of salt stress on gene expression are carried out on nucleus-encoded genes (reviewed by [4])

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call