Abstract
Developing efficient and stable visible light active photocatalyst has significant environmental applications. Though dye sensitization of TiO2 nanoparticles with natural chlorophyll pigments can potentially impart visible light activity, their long-term stability is a major concern. We investigated the functionalization of TiO2 with salicylic acid, and subsequent sensitization with chlorophylls to improve the catalyst stability for the photocatalytic degradation of Ciprofloxacin (CPX) under visible light. A significant improvement in the degradation efficiency and catalyst stability was observed for five reuse cycles. Further, an optimum CPX degradation of ∼75% was achieved with 0.75 g L−1 catalyst dosage of 0.1 chl/0.1 SA-TiO2, initial pH of 6, and 10 ppm of initial CPX for a visible light exposure of 2 h. The degradation followed the pseudo-second-order kinetics. In addition, the ciprofloxacin degradation was reduced in the wastewater matrix system due to the presence of other scavenging species such as chlorides, sulphates, and alkalinity. Significant reduction in the toxicity of degradation compounds after the photocatalytic degradation was observed in comparison to parent CPX. Further, the degradation pathway and plausible mechanism of degradation of CPX were also proposed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have