Abstract

BackgroundPhotosynthetic efficiency might be a key factor determining plant resistance to abiotic stresses. Plants can sense when growing conditions are not favorable and trigger an internal response at an early stage before showing external symptoms. When a high amount of salt enters the plant cell, the membrane system and function of thylakoids in chloroplasts could be destroyed and affect photosynthetic performance if the salt concentration is not regulated to optimal values. Oryza species have salt-tolerant and salt-sensitive genotypes; however, very few studies have investigated the genetic architecture responsible for photosynthetic efficiency under salinity stress in cultivated rice.ResultsWe used an imaging-based chlorophyll fluorometer to monitor eight rice varieties that showed different salt tolerance levels for four consecutive days under control and salt conditions. An analysis of the changes in chlorophyll fluorescence parameters clearly showed the maximum quantum efficiency of PSII in sensitive varieties was significantly reduced after NaCl treatment when compared to tolerant varieties. A panel of 232 diverse rice accessions was then analyzed for chlorophyll fluorescence under salt conditions, the results showed that chlorophyll fluorescence parameters such as F0 and NPQ were higher in Japonica subspecies, ΦPSII of Indica varieties was higher than that in other subgroups, which suggested that the variation in photosynthetic efficiency was extensively regulated under salt treatment in diverse cultivated rice. Two significant regions on chromosome 5 were identified to associate with the fraction of open PSII centers (qL) and the minimum chlorophyll fluorescence (F0). These regions harbored genes related to senescence, chloroplast biogenesis and response to salt stress are of interest for future functional characterization to determine their roles in regulating photosynthesis.ConclusionsRice plant is very sensitive to salinity stress, especially at young seedling stage. Our work identified the distribution pattern of chlorophyll fluorescence parameters in seedlings leaf and their correlations with salt tolerance level in a diverse gene pool. We also revealed the complexity of the genetic architecture regulating rice seedling photosynthetic performance under salinity stress, the germplasm analyzed in this study and the associated genetic information could be utilized in rice breeding program.

Highlights

  • Photosynthetic efficiency might be a key factor determining plant resistance to abiotic stresses

  • Evaluating the performance of leaf fluorescence parameters in time series under control and salinity conditions using eight rice varieties that show different salt tolerance levels In the pilot experiment, we aimed to identify the optimal seedling stage and target leaf tissue displaying a wide range of chlorophyll fluorescence variation under salt stress

  • Considering that chlorophyll fluorescence parameters differed among subpopulations, we investigated whether these parameters and the salt tolerance level were correlated by genetic relatedness in each subpopulation

Read more

Summary

Introduction

Photosynthetic efficiency might be a key factor determining plant resistance to abiotic stresses. When a high amount of salt was accumulated in the plant cell for a period of time, the membrane permeability and function of thylakoids in chloroplasts was damaged [3]; a gradual decrease in the activity of photosystems (PSI and PSII) and chlorophyll fluorescence was observed [4]. The correlation between chlorophyll fluorescence and chloroplast ultrastructure, such as the morphology of thylakoids, under salt stress has been examined in barley and rice [4, 6, 7]. These studies showed that salt-tolerant varieties had reduced thylakoid swelling, relatively high PSII electron transport activity, slowly decreasing maximum chlorophyll fluorescence yield and delayed senescence

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.