Abstract

The stomata of Suaeda salsa are closed and the photosynthetic efficiency is decreased under conditions of water–salt imbalance, with the change to photosynthesis closely related to the chlorophyll fluorescence parameters of the photosystem PSII. Accordingly, chlorophyll fluorescence parameters were selected to monitor the growth status of Suaeda salsa in coastal wetlands under conditions of water and salt. Taking Suaeda salsa in coastal wetlands as the research object, we set up five groundwater levels (0 cm, −5 cm, −10 cm, −20 cm, and −30 cm) and six NaCl salt concentrations (0%, 0.5%, 1%, 1.5%, 2%, and 2.5%) to carry out independent tests of Suaeda salsa potted plants and measured the canopy reflectance spectrum and chlorophyll fluorescence parameters of Suaeda salsa. A polynomial regression method was used to carry out hyperspectral identification of Suaeda salsa chlorophyll fluorescence parameters under water and salt stress. The results indicated that the chlorophyll fluorescence parameters Fv/Fm, Fm′, and ΦPSII of Suaeda salsa showed significant relationships with vegetation index under water and salt conditions. The sensitive canopy band ranges of Suaeda salsa under water and salt conditions were 680–750 nm, 480–560 nm, 950–1000 nm, 1800–1850 nm, and 1890–1910 nm. Based on the spectrum and the first-order differential spectrum, the spectral ratio of A/B was constructed to analyze the correlation between it and the chlorophyll fluorescence parameters of Suaeda salsa. We constructed thirteen new vegetation indices. In addition, we discovered that the hyperspectral vegetation index D690/D1320 retrieved Suaeda chlorophyll fluorescence parameter Fv/Fm with the highest accuracy, with a multiple determination coefficient R2 of 0.813 and an RMSE of 0.042, and that D725/D1284 retrieved Suaeda chlorophyll fluorescence parameter ΦPSII model with the highest accuracy, with a multiple determination coefficient R2 of 0.848 and an RMSE of 0.096. The hyperspectral vegetation index can be used to retrieve the chlorophyll fluorescence parameters of Suaeda salsa in coastal wetlands under water and salt conditions, providing theoretical and technical support for future large-scale remote sensing inversion of chlorophyll fluorescence parameters.

Highlights

  • Coastal wetlands are located at the junction of land-sea ecosystems [1]

  • Taking a new perspective of combining spectral characteristics with plant chlorophyll fluorescence parameters during the interaction of water and salt stresses, this study investigated the hyperspectral identification of chlorophyll fluorescence parameters of Suaeda salsa

  • The results demonstrated that the chlorophyll fluorescence parameters Fv/Fm, Fm0, and ΦPSII of Suaeda salsa responded significantly to water and salt stress

Read more

Summary

Introduction

Coastal wetlands are located at the junction of land-sea ecosystems [1]. Fluctuation in salinity is one of the key features in wetlands, animals, and plants under. 2021, 13, 2066 prolonged stress with a variation of salinities [2,3]. Seawater erosion, coastal reclamation, and invasion of alien species have changed the groundwater level and salinity of coastal wetlands, causing the growth of Suaeda salsa under dual stresses of water and salinity [6]. The growth and development of plants cannot be separated from water and salt. When water and salt contents are too high or too low, plant growth is restricted [7]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.