Abstract

We present a novel, greener chloromethylation procedure for organosolv aspen lignin under mild reaction conditions without Lewis acid as a catalyst and in acetic acid as a solvent. This synthetic protocol provides a reliable approach to chloromethylated lignin (CML) and means to obtain valuable lignin derivatives. The resulted CML was subsequently transformed into 1-methylimidazolium lignin (ImL), which effectively serves as a stabilizing agent for Pd/CuO nanoparticles (Pd/CuO-NPs). To evaluate the versatility of developed lignin-based catalyst, we investigate its performance in a series of carbon-carbon bond formation reactions, including Suzuki-Miyaura, Sonogashira, Heck reactions, and azide-alkyne cycloaddition (click) reaction. Remarkably, this catalyst exhibited a high degree of catalytic efficiency, resulting in reactions with yields ranging from average to excellent. The heterogeneous catalyst demonstrated outstanding recyclability, enabling its reuse for at least 10 consecutive reaction cycles, with yields consistently falling within the range of 42 % to 84 %. A continuous flow reactor cartridge prototype employing Lignin@Pd/CuO-NPs was developed, yielding results comparable to those achieved in batch reactions. The utilization of Lignin@Pd/CuO-NPs as a catalyst showcases its potential to facilitate diverse carbon-carbon bond formation reactions and underscores its promising recyclability, aligning with the green chemistry metrics and principles of sustainability in chemical processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.