Abstract

Chlorogenic acid (CA, United States Patent No. 10772340), a natural biologically active food ingredient, displays potent antitumor activity against a variety of cancer cells. However, the mechanism underlying its anticancer effect is not well elucidated. In the present study, we hope to dissect the mechanism underlying the anticancer effects of CA in pancreatic cancer cells. The cytotoxicity of CA in pancreatic cancer cells was determined by MTT assay. Flow cytometry was performed to evaluate the cells apoptosis, while a clonogenic assay was carried out to check the colony formation of cancer cells. Transwell assay was performed to assess the cells migration and invasion. The protein expression of AKT/GSK-3β/β-catenin signaling pathway was detected by Western Blot. Our data indicated that CA inhibited the proliferation of PANC-28 and PANC-1 cells in a dose and time-dependent manner. CA was able to inhibit colony formation, migration, and invasion ability and trigger apoptosis in PANC-28 and PANC-1 cells. Further study showed that CA down-regulated the expression of AKT, p-AKT(Thr308), p-GSK-3β(Ser9), β-catenin, N-cadherin, and vimentin while enhancing the expression of cleaved-caspase 3 and cleaved-caspase 7 in PANC-28 and PANC-1 cells. Our study provides significant evidence that CA is able to inhibit the growth of pancreatic cancer via the AKT/GSK-3β/β-catenin signaling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call