Abstract

Pro-inflammatory factors released by activated microglia may contribute to the progression of neurodegenerative diseases. As a natural phenolic acid, chlorogenic acid (CGA) has been shown to have anti-inflammatory properties. However, it is unclear whether CGA has the ability to mediate microglial activation. The present study investigated the role of CGA in lipopolysaccharide (LPS)-stimulated microglia. Our data demonstrated that CGA significantly suppressed NO production and TNF-α release in LPS-stimulated primary microglia. In addition, CGA decreased LPS-stimulated phosphorylation and degradation of inhibitory kappa B-alpha (IκBα), and prevented translocation of nuclear factor-kappaB (NF-κB). Furthermore, CGA prevented neurotoxicity caused by microglial activation and ultimately improved survival of dopaminergic (DA) neuron. Finally, in vivo data showed that CGA pretreatment attenuated LPS-induced IL-1β and TNF-α release in substantia nigra (SN). Our results suggested that the pretreatment of CGA significantly inhibits the microglial activation, and CGA may be neuroprotective for pro-inflammatory factor-mediated neurodegenerative disorders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.