Abstract

Abstract Electrochemical technologies for the on-site treatment of spent acid etchant have received great attention due their ease of operation and economic benefits. On the other hand, a large amount of Cl2 is generated during the electrolysis process, which leads to potential environmental risks. In the present work, a novel three-compartment ceramic membrane flow reactor, including a cathode chamber, an anode chamber, and a gas absorption chamber was developed. The three chambers were divided by an Al2O3 ceramic membrane and a breathable hydrophobic anode diffusion electrode (ADE). The Cl2 evolution onset potential of the ADE was increased to 1.19 V from 1.05 V of the graphite felt, effectively inhibiting the chlorine evolution reaction (CER). The anode-generated Cl2 diffused into the gas absorption chamber through the ADE and was eventually consumed by the H2O2 adsorbent. Cu could be recovered without emitting chlorine due to the special structure of reactor. The current efficiency of copper precipitation and cathode reduction from Cu2+ to Cu+ reached 97.7% at a working current of 150 mA. These results indicated that the novel membrane reactor had high potential for application in the copper recovery industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.