Abstract

In this paper, Al2O3 ceramic membrane is modified to hydrophobicity by grafting 1 H,1 H,2 H,2 H-perfluorodecyltriethoxysilane. And its properties are characterized in detail. CO2 capture performance of ceramic membrane is investigated by experiments. Results show that wetting resistance after modification is significantly improved, and contact angle increases from the initial 49.8–130.9°. However, hydrophobic modification has no significant effect on the crystalline phase, surface morphology and pore size distribution of the ceramic membrane. With ethanolamine (MEA) as absorbent, CO2 mass transfer rate and capture efficiency using modified hydrophobic ceramic membrane are 46.6 × 10−3 mol/(m2·s) and 98.0%, showing significantly increase compared to the original membrane. After 72 h immersion in MEA solution, quality of ceramic membrane does not change significantly. And there is almost no change in average pore size. We believe this study will provide a reference for the industrial application for CO2 capture by gas-liquid membrane contactor with ceramic membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.