Abstract
Chlorinated polyfluorinated ether sulfonates (Cl-PFAESs) are the alternative products of perfluorooctanesulfonate (PFOS) in the metal plating industry in China. The similarity in chemical structures between Cl-PFAESs and PFOS makes it reasonable to assume they possess similar biological activities. In the present study, we investigated whether Cl-PFAESs could induce cellular effects through peroxisome proliferator-activated receptors (PPARs) signaling pathways like PFOS. By using fluorescence competitive binding assay, we found two dominant Cl-PFAESs (6:2 Cl-PFAES and 8:2 Cl-PFAES) bound to PPARs with affinity higher than PFOS. Based on the luciferase reporter gene transcription assay, the two Cl-PFAESs also showed agonistic activity toward PPARs signaling pathways with potency similar to (6:2 Cl-PFAES) or higher than (8:2 Cl-PFAES) PFOS. Molecular docking simulation showed the two Cl-PFAESs fitted into the ligand binding pockets of PPARs with very similar binding mode as PFOS. The cell function results showed Cl-PFAESs promoted the process of adipogenesis in 3T3-L1 cells with potency higher than PFOS. Taken together, we found for the first time that Cl-PFAESs have the ability to interfere with PPARs signaling pathways, and current exposure level of 6:2 Cl-PFAES in occupational workers has exceeded the margin of safety. Our study highlights the potential health risks of Cl-PFAESs as PFOS alternatives.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have