Abstract

The chloride-induced corrosion mechanisms of uncoated, pure enamel (PE)-coated, mixed enamel (ME)-coated, double enamel (DE)-coated, and fusion bonded epoxy (FBE)-coated deformed steel bars embedded in mortar cylinders are investigated in 3.5wt.% NaCl solution and compared through electrochemical tests and visual inspection. Corrosion initiated after 29 or 61days of tests in all uncoated and enamel-coated steel bars, and after 244days of tests in some FBE-coated steel bars. In active stage, DE- and FBE-coated steel bars are subjected to the highest and lowest corrosion rates, respectively. The uncoated and ME-coated steel bars revealed relatively uniform corrosion while the PE-, DE-, and FBE-coated steel bars experienced pitting corrosion around damaged coating areas. Due to the combined effect of ion diffusion and capillary suction, wet–dry cyclic immersion caused more severe corrosion than continuous immersion. Both exposure conditions affected the corrosion rate more significantly than the water–cement ratio in mortar design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call