Abstract

Chlorella (Parachlorella beijerinckii) powder is reported to show a preventive effect against metabolic syndromes such as arteriosclerosis, hyperlipidemia, and hypertension. Approximately 60% of the chlorella content is protein. In order to understand the role of chlorella protein, we prepared a chlorella protein hydrolysate (CPH) by protease treatment. Male C57BL/6 mice were divided into three groups: a normal diet group, high-fat diet (HFD) group, and high-fat diet supplemented with CPH (HFD+CPH) group. The CPH administration improved glucose intolerance, insulin sensitivity, and adipose tissue hypertrophy in the high-fat diet-fed mice. In addition, the HFD+CPH group had significantly decreased liver total cholesterol and triglyceride levels compared with those in the HFD group. Furthermore, the HFD+CPH group had a decreased level of monocyte chemotactic protein-1 (MCP-1) in serum and a lower MCP-1 mRNA expression level in adipose tissue compared with the HFD group. The present study suggests that chlorella protein hydrolysate can prevent a high-fat diet-induced glucose disorder and fatty liver by inhibiting adipocyte hypertrophy and reducing the MCP-1 protein and gene expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.