Abstract

Chitosan–magnesium aluminum silicate (CS–MAS) films were prepared and the effects of MAS content and heat treatment of the CS–MAS dispersion before film casting on the physicochemical and drug permeability properties of the films were investigated. CS could interact with MAS via electrostatic interaction and intermolecular hydrogen bonding mechanisms, resulting in nanocomposite formation, for which it was not necessary to apply the heat treatment on the composite dispersions. The nature of the exfoliated and intercalated nanocomposite films formed was depended on the MAS content added. The heat treatment on the composite dispersions caused an increase in tensile strength, but reduced %elongation of the CS–MAS nanocomposite films. The exfoliated nanocomposite films showed higher flexibility, water uptake, and drug permeability compared to the CS and intercalated CS–MAS nanocomposite films. At higher MAS content, the CS–MAS films prepared using heat treatment had a lower water uptake, resulting in lower drug permeability when compared with those prepared using non-heated dispersions. The permeation mechanism of non-electrolyte and negatively charged drugs across the CS–MAS nanocomposite films was predominantly controlled by diffusion in water-filled microchannels, whereas both adsorption onto MAS and diffusion processes occurred concurrently for the film permeation of positively charged drugs. The findings of this study suggest that CS–MAS nanocomposite films can be formed without heating of the composite dispersion before casting. CS–MAS nanocomposites showed strong potential to be used as a film former for coated tablets intended for modulating drug release.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.