Abstract

This study explores the eco-friendly biosynthesis of silver nanoparticles (AgNPs) utilizing Camellia sinensis leaf extract. We assess their antioxidant and antibacterial properties. Furthermore, we impregnated AgNPs into 2 % chitosan (CHS) gel and assessed their wound-healing potential in Escherichia coli and Staphylococcus aureus infected wounds. Optimized AgNPs demonstrated a mean particle size of 36.90 ± 1.22 nm and a PDI of 0.049 ± 0.001. Green-synthesized AgNPs exhibited enhanced free radical inhibition (IC50: 31.45 μg/mL, 34.01 μg/mL, 27.40 μg/mL) compared to leaf extract (IC50: 52.67 μg/mL, 59.64 μg/mL, 97.50 μg/mL) in DPPH, hydrogen peroxide, and nitric oxide free radical scavenging assays, respectively. The MIC/MBC values of AgNPs against E. coli and S. aureus were 5 ppm/ 7.5 ppm and 10 ppm/ 15 ppm, respectively. Furthermore, our study showed that green-synthesized AgNPs at MIC significantly reduced the biofilm production of E. coli (70.37 %) and S. aureus (67.40 %). The CHS/AgNPs gel exhibited potent wound healing activities, comparable to a commercial cream with the re-epithelialization period of 8.16 ± 0.75. Histological analysis demonstrated enhanced skin regeneration with a thicker epidermal layer, well-defined papillary dermal structure, and organized collagen fibers. In summary, these findings hold promise for addressing bacterial infections, particularly those associated with biofilms-related wound infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call