Abstract

The design of surface ligands is crucial for ligand-protected gold nanoparticles (AuNPs). Herein, following the principle of green synthesis, environmentally friendly gold nanoparticles (AuNPs@His@CC, AuHC) were fabricated based on dual ligands of histidine and carboxylated chitosan. AuHC showed the advantages of low toxicity, good photoluminescent stability and ideal biocompatibility. Compared with single histidine-coated gold nanoclusters (AuNCs@His, AuH), AuHC presented enhanced fluorescence attributed to the addition of chitosan. The blue-emitting AuHC has a unique response to Fe3+ with detection limits as low as 9.51 nM. Interestingly, the quenched fluorescence of AuHC–Fe3+ system could be restored through the introduction of PPi with a detection limit of 10.6 μM. So an “on-off-on” fluorescence sensing platform was achieved. Apart from good optical properties and sensing, the designed AuHC demonstrated outstanding photothermal conversion efficiency (27.8 %), which made it ideal material for thermal ablation of tumor. To be specific, after laser irradiation (660 nm, 0.78 W cm−2, 10 min) of AuHC, the survival rate of HeLa cells as a tumor cell model decreased to 12.7 %, indicating that AuHC has a significant tumor inhibition effect in vitro. Besides, AuHC also could be a befitting candidate for overcoming drug-resistant tumor cells such as MCF-7/ADR cells. Notably, AuHC can markedly ablate solid tumors in 4T1 tumor-bearing mice after laser irradiation (660 nm, 0.78 W cm−2, 10 min). Hence this work provides insight into the design of multifunctional AuNPs platform for simultaneously integrating the ion sensing and photothermal therapy of cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call