Abstract
Chitosan (CS) is a kind of high molecular polymer with antibacterial properties. A copolymer with high bacteriostatic activity can be formed by grafting phenolic acid compounds into the chitosan molecular chain, which can inhibit the growth of dominant spoilage bacteria in aquatic products. The study aimed to investigate the antibacterial effect and mechanism of chitosan-grafted-phenolic acid copolymers on Shewanella putrefaciens (S. putrefaciens). CS-grafted-protocatechuic acid (CS-g-PA) and CS-grafted-gallic acid (CS-g-GA) were attained by EDC/NHS coupling reaction. The antibacterial tests indicated that CS-g-PA and CS-g-GA had the same minimum inhibitory concentration (MIC) (1.25mg/mL) and minimum bactericidal concentration (MBC) (5.0mg/mL) against S. putrefaciens. According to the change trend of growth curve, the growth of S. putrefaciens was significantly restrained under 2MIC graft copolymers (P < 0.05). Moreover, the increment of alkaline phosphatase (AKPase) activity and electrical conductivity demonstrated that the cell wall and membrane permeability of S. putrefaciens were damaged respectively. In addition, the increase of lactate dehydrogenase (LDHase) activity, protein and nucleic acid absorbance and the decrease of adenosine triphosphatase (ATPase) activity suggested that the cell membrane was incomplete and poor fluidity. The irregular shape of bacteria and the outflow of intercellular contents were also observed from scanning electron microscope (SEM). The above results manifested a great potential of CS-g-PA and CS-g-GA for use as food preservatives to aquatic products.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have