Abstract

In the present study, environmentally benign silver nanoparticles were synthesized using commercially purchased shrimp-shell chitosan as a capping agent. The synthesized chitosan-silver nanoparticles (Ch-AgNPs) were physico-chemically characterized by UV–Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), high-resolution transmission electron microscopy (HR-TEM) along with energy dispersive X-ray analysis (EDX), DLS and Zeta potential analysis. Ch-Ag NPs were crystalline, uniformly dispersed, and spherically shaped, with particle size between 8 and 48 nm. The average size of Ch-AgNPs was 21 nm. In-vitro anti-biofilm activity of Ch-AgNPs was tested against wound infection-causing pathogenic bacteria such as Staphylococcus aureus (Gram-positive) and Pseudomonas aeruginosa (Gram-negative). Ch-AgNPs displayed anti-biofilm activity in a dose-dependent manner. Light and confocal-laser scanning microscopy confirmed the significant inhibition of biofilm growth of S. aureus (85%) and P. aeruginosa (95%) at 100 μg mL−1 of Ch-AgNPs. Moreover, Ch-AgNPs promoted wound healing by increasing the migration of RAW 264.7 murine macrophages cells at 75 and 100 μg mL−1after 24 h. In addition, in vitro cytotoxicity of Ch-AgNPs against MCF 7 (human breast cancer) cells, depicted the greater inhibition of proliferation of cells (64%) at 100 μg mL−1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call