Abstract

Prostate cancer is known as the most common malignancy in men. Chitosan has generated great interest as a useful biopolymer for the encapsulation of small interfering RNA (siRNA). Due to cationic nature, chitosan is able to efficiently encapsulate siRNA molecules and form nanoparticles. Furthermore, the biocompatible and biodegradable attributes of chitosan have paved the way for its potential application in the in vivo delivery of therapeutic siRNAs. In this study, we aimed to design chitosan/CMD nanoparticles for the efficient encapsulation of the anti-cancer drugs SN38 and Snail-specific siRNA. Physicochemical characteristics, growth inhibitory properties, and anti-migratory capacities of the dual delivery of SN38-Snail siRNA CMD-chitosan nanoparticles were investigated in prostate cancer cells. Our findings provided evidence for the suggestion that, ChNP-CMD-SN38-siRNA treated cells, the mRNA level of snail decreased from 1.00 to 0.30 (±0.14) and 0.09 (±0.04) after 24h and 48h, respectively. Additionally, the fold induction of E-cadherin and Claudin-1 increased from 1.00 to now 3.12 (±0.62), 3.02 (±0.28) after 24h and 5.6 (±0.91), 4.42 (±0.51) after 48h, respectively. Also, co-delivery of SN38 and Snail-specific siRNA by an appropriate nanocerrier (chitosan nanoparticles) could reduce the viability, proliferation, and migration of PC-3 cells. In conclusion, ChNPs encapsulating SN38 and Snail-specific siRNA may represent huge potential as an effective anti-cancer drug delivery system for the treatment of prostate cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.