Abstract
Electrospinning was used as an effective route to pattern chitosan (CS) and polycaprolactone (PCL) membranes with submicron fibers having different chemical structure (PCL or PCL/collagen) and physical characteristics (size: between ≈200 and 550 nm; randomly oriented or aligned form). While the PCL fibers with diameters in the same range (≈200 nm) were patterned on both of CS and PCL membranes to evaluate the influence of the underlying membrane chemistry, only CS membranes were patterned with PCL fibers having different sizes simply by changing the electrospinning conditions to investigate the effects of pattern characteristics. Furthermore, collagen was added to the PCL fiber structure to change the chemical composition of the fibers in a cell-attractive way. Two cell lines with different morphologies, fibroblastic MC3T3-E1 preosteoblasts and epithelial Madine Darby Bovine Kidney (MDBK) cells, were cultured on the patterned membranes. The observation of cellular behavior in terms of cell morphology and F-actin synthesis was realized by scanning electron microscopy and confocal microscopy analysis during the first 12 h of culture period. The viability of cells was controlled by MTT assay through 96 h of cell culture. The cell culture studies indicated that the leading aspect for the morphology change on patterned membranes was the fiber orientation. The aligned topography controlled the morphology of cells both on CS and PCL membranes. In the presence of collagen in the fiber structure, F-actin filament synthesis increased for MC3T3-E1 and MDBK cell lines.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.