Abstract

ObjectiveAlcohol overconsumption and abuse lead to alcoholic liver disease (ALD), which is a major chronic liver disease worldwide. Chitinase-3-like protein 1 (CHI3L1) have an important role in the pathogenesis of inflammatory disease. However, the role of CHI3L1 in ALD has not yet been reported. In the present study, we investigated the effect of CHI3L1 on chronic plus binge ethanol-induced liver injury. MethodsCHI3L1 knock out (KO) mice and their littermate control mice based on C57BL/6 (10–12 weeks old) were fed on a Lieber-DeCarli diet containing 6.6% ethanol for 10 days. And, CHI3L1 siRNA or CHI3L1 expressing vector was transfected HepG2 cells were treated with ethanol or without. ResultsEthanol-induced hepatic triglyceride (TG) levels and the mRNA levels of TG synthesis-related genes such as acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS) and stearoyl-CoA desaturase-1 (SCD1) were decreased in the liver of CHI3L1 knock out (KO) mice and the HepG2 cells transfected with CHI3L1 siRNA. Increased mRNA level and activation of SREBP1 which is transcription factor of ACC, FAS and SCD1 by ethanol feeding were reduced in the liver of ethanol-fed CHI3L1 KO mice. Moreover, ethanol-induced SREBP1 luciferase activity and mRNA level of SREBP1, ACC, FAS and SCD1 were also decreased in the HepG2 cells transfected with CHI3L1 siRNA, while those were further increased in the HepG2 cells treated with recombinant human CHI3L1. Furthermore, oxidative stress and up-regulated pro-inflammatory cytokines by ethanol were recovered in the liver of ethanol-fed CHI3L1 KO mice. ConclusionOur finding suggest that inhibition of CHI3L1 suppressed ethanol-induced liver injury through inhibition of TG synthesis, and the blocking of oxidative stress and hepatic inflammation induced SREBP1 activity could be significant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.