Abstract

The peritrophic membrane in Acarus siro L. (Acari: Acaridae) is produced by distinct cells located in the ventriculus. In this study, the chitin inside the peritrophic membrane was detected using wheat germ-lectin conjugated with colloidal gold (10 nm). The chitin fibrils of the peritrophic membrane were a target for chitin effectors, including 1) chitinase, which hydrolyzes chitin fibers inside the peritrophic membrane; 2) calcofluor, which binds to chitin and destroys the peritrophic membrane mesh structure; and 3) diflubenzuron, which inhibits chitin synthesis. In addition, soybean trypsin protease inhibitor (STI) and cocktails of chitinase/calcofluor, diflubenzuron/calcofluor and chitinase/STI were tested. These compounds were supplemented in diets and an increase of population initiated from 50 individuals was observed after 21 d of cultivation. Final A. siro densities on experimental and control diets were compared. The chitin in the peritrophic membrane was determined to be a suitable target for novel acaricidal compounds for suppressing the population growth of A. siro. The most effective compounds were calcofluor and diflubenzuron, whereas the suppressive effects of chitinase and STI were low. The failure of chitinase could be due to its degradation by endogenous proteases. The combination of chitinase and STI suppressed A. siro population growth more effectively than when they were tested in oral admission separately. The combinations of calcofluor/chitinase or calcofluor/difluorbenzuron showed no additive effects on final A. siro density. The presence of chitin in peritrophic membrane provides a target for novel acaricidal compounds, which disrupt peritrophic membrane structure. The suitability of chitin effectors and their practical application in the management of stored product mites is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.