Abstract

Extraction of chitin from mud crab (Scylla serrata) shells, involving demineralization and deproteinization, and deacetylation of the extracted chitin to form chitosan were investigated. The mud crab chitin and chitosan were obtained with a good yield (16.8% and 84.7% based on dried weight basis). The physicochemical properties, functional groups, molecular weight, and degree of acetylation of the chitin and chitosan were characterized. The surface morphology, the orientation arrangement of polysaccharide strands, and crystallinity of the chitin and chitosan prepared from the mud crab shells were investigated. SEM, FTIR, and XRD analyses demonstrated that the chitin consists of micron-sized fibrils, belonging to α from with the crystallinity of 60.1%. The chitosan has a viscosity-average molecular weight of 6.83 kDa with the degree of acetylation being 9.6% and the crystallinity of 73.8%. The chitosan was successfully fabricated into submicron-sized particles using top-down ionotropic gelation, microwave, and microemulsion methods, employing sodium tripolyphosphate, potassium persulfate, and glutaraldehyde as reagents, respectively. Overall, the results indicated that the preparation of chitin, chitosan, and submicron-sized chitosan particles from mud crab shells could open the opportunity for the value-added seafood waste to be utilized in a wide range of practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call