Abstract
In this work, we present an application of Lie group analysis to study the generalized derivative nonlinear Schrödinger equation, which governs the evolution of a nonlinear wave and plays an important role in the propagation of short pulses in optical fiber systems. To construct Lie group reductions, we study the symmetry properties and introduce various infinitesimal operators. Further, we obtain self-similar solutions and periodic soliton solutions of the generalized derivative nonlinear Schrödinger equation. This type of solution plays a vital role in the study of the blow-up and asymptotic behavior of non-global solutions. And at the end, we present graphs for each solution by considering the physical meaning of the solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.