Abstract
We consider the analytical representation of the potential energy surfaces of relevance for the intermolecular dynamics of weakly bound complexes of chiral molecules. In this paper we study the H2O2-Ng (Ng=He, Ne, Ar, Kr, and Xe) systems providing the radial and the angular dependence of the potential energy surface on the relative position of the Ng atom. We accomplish this by introducing an analytical representation which is able to fit the ab initio energies of these complexes in a wide range of geometries. Our analysis sheds light on the role that the enantiomeric forms and the symmetry of the H2O2 molecule play on the resulting barriers and equilibrium geometries. The proposed theoretical framework is useful to study the dynamics of the H2O2 molecule, or other systems involving O-O and S-S bonds, interacting by non-covalent forces with atoms or molecules and to understand how the relative orientation of the O-H bonds changes along collisional events that may lead to a hydrogen bond formation or even to selectivity in chemical reactions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have