Abstract

Electrodeposits grown around a point cathode in a flat, horizontal electrochemical cell have fractal form. When grown in the presence of a perpendicular applied magnetic field, the deposits develop a spiral structure with chirality which reverses on switching the field direction. These structures are modeled numerically using biased variants of the diffusion limited aggregation (DLA) model. The effects of electric and magnetic fields are modeled successfully by varying the probabilities that a random walker will move in a given direction as a result of a Coulomb force and the Lorentz force-induced flow of electrolyte past the deposit surface. By contrast, a numerical model which considers only the effect of the Lorentz force on individual ions, without reference to the surface of the growing deposit, produces spiral structures with incorrect chirality. The modified DLA model is related to the differential equations for diffusion, migration, and convection. Length scales in the problem are understood by associating the step length of the random walker with the diffusion layer thickness, the lookup radius with the hydrodynamic boundary layer thickness and a point on the numerical deposit with a nucleation center for growth of a crystallite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.