Abstract

Spontaneous chiral symmetry breaking is observed in a wide variety of systems on very different scales, from the subatomic to the cosmological. Despite its generality and importance for a large number of applications, its origin is still a matter of debate. It has been shown that the existence of a difference between the energies of the intermediate states of optical enantiomers leads to disparate production rates and thus to symmetry breaking. However, it is still unclear why this occurs. We measured for the first time the optical rotation angle of NaClO3 enantiomeric crystals in solution during their formation and found that the amount of energy needed to induce the enantiomeric excess is exactly the same as the energy dissipated per mole of solid salt calculated from the entropy production obtained from the proposed model. The irreversible nature of the process leading to entropy production thus explains the chiral symmetry breaking in the salt crystals studied. The proposed method could be used to explain the formation of self-organised structures generated by self-assembly of enantiomers arising from chiral symmetry breaking, such as those emerging in the production of advanced materials and synthetic biological tissues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call