Abstract

The separation of the enantiomers of mepromazine, promethazine, thioridazine and alimemazine was studied by nonaqueous capillary electrophoresis in the presence of cyclodextrins using 1 M acetic acid and 50 mM ammonium acetate in methanol as background electrolyte. Heptakis(2,3-di-O-acetyl-6-O-sulfo)-β-cyclodextrin, heptakis(2,3-di-O-methyl-6-O-sulfo)-β-cyclodextrin (HDMS-β-CD) and octakis(2,3-di-O-methyl-6-O-sulfo)-γ-cyclodextrin were the most effective chiral selectors for mepromazine, promethazine and alimemazine. Subsequently, a method for the determination of dextromepromazine as chiral impurity of levomepromazine was developed employing quality by design principles. Using HDMS-β-CD as selector, a fractional factorial resolution V+ design was employed for evaluating the knowledge space, while a central composite face centered design provided further method optimization and the basis for the computation of the design space by Monte Carlo simulations. The final experimental conditions included a 30/40.2 cm fused-silica capillary with 75 µm inner diameter and a background electrolyte composed of 0.75 M acetic acid and 55 mM ammonium acetate in methanol containing 27.5 mg/mL HDMS-β-CD. The applied voltage was 22 kV and the capillary temperature was 15°C. Following method robustness testing via a Plackett-Burman design, the method was validated for dextromepromazine in the range of 0.01 to 3.0 % relative to a concentration of 0.74 mg/mL levomepromazine and applied to the analysis of reference standards of the European Pharmacopoeia and commercial tablets. The assay also allowed the detection of levomepromazine sulfoxide although the quantitation of the compound was hampered by the poor peak shape of the late migrating diastereomer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call