Abstract

The nature of the pseudogap phase of cuprates remains a major puzzle. One of its new signatures is a large negative thermal Hall conductivity $\kappa_{\rm xy}$, which appears for dopings $p$ below the pseudogap critical doping $p^*$, but whose origin is as yet unknown. Because this large $\kappa_{\rm xy}$ is observed even in the undoped Mott insulator La$_2$CuO$_4$, it cannot come from charge carriers, these being localized at $p = 0$. Here we show that the thermal Hall conductivity of La$_2$CuO$_4$ is roughly isotropic, being nearly the same for heat transport parallel and normal to the CuO$_2$ planes, i.e. $\kappa_{\rm zy}(T) \approx \kappa_{\rm xy} (T)$. This shows that the Hall response must come from phonons, these being the only heat carriers able to move as easily normal and parallel to the planes . At $p > p^*$, in both La$_{\rm 1.6-x}$Nd$_{\rm 0.4}$Sr$_x$CuO$_4$ and La$_{\rm 1.8-x}$Eu$_{\rm 0.2}$Sr$_x$CuO$_4$ with $p = 0.24$, we observe no c-axis Hall signal, i.e. $\kappa_{\rm zy}(T) = 0$, showing that phonons have zero Hall response outside the pseudogap phase. The phonon Hall response appears immediately below $p^* = 0.23$, as confirmed by the large $\kappa_{\rm zy}(T)$ signal we find in La$_{1.6-x}$Nd$_{\rm 0.4}$Sr$_x$CuO$_4$ with $p = 0.21$. The microscopic mechanism by which phonons become chiral in cuprates remains to be identified. This mechanism must be intrinsic - from a coupling of phonons to their electronic environment - rather than extrinsic, from structural defects or impurities, as these are the same on both sides of $p^*$. This intrinsic phonon Hall effect provides a new window on quantum materials and it may explain the thermal Hall signal observed in other topologically nontrivial insulators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.