Abstract
An effective hadronic field theory provides a framework to carry out systematic and consistent calculations of low-energy strong interaction processes. Its fundamental ingredient is chiral symmetry, which ensures a perturbative expansion of the nuclear potential in loops and many-nucleon effects. The two-nucleon potential to a certain order in this expansion provides a good fit to deuteron properties and to phase shifts up to 100 MeV laboratory energies. A consistent three-nucleon potential can also be obtained. Isospin violation from the quark mass difference and electromagnetism is shown to obey an observed hierarchy. Processes involving external probes—pion-deuteron scattering, proto-neutron radiative capture, pion photoproduction on the deuteron, and pion production in proton-proton collisions— are also discussed in the same framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.