Abstract

We fabricate the bio-organic field-effect transistor (BOFET) with the DNA-perylene diimide (PDI) complex, which shows unusual chiroptical and electrical functionalities. DNA is used as the chirality-inducing scaffold and the charge-injection layer. The shear-oriented film of the DNA-PDI complex shows how the large-area periodic molecular orientation and the charge transport are related, generating drastically different optoelectronic properties at each DNA/PDI concentration. The resultant BOFET reveals chiral structures with a high charge carrier mobility, photoresponsivity, and photosensitivity, reaching 3.97 cm2 V-1 s-1, 1.18 A W-1, and 7.76 × 103, respectively. Interestingly, the BOFET enables the definitive response under the handedness of circularly polarized light with a high dissymmetry factor of approximately +0.14. This work highlights the natural chirality and anisotropy of DNA material and the electron conductivity of organic semiconducting molecules to be mutually used in significant chiro-optoelectronic functions as an added ability to the traditional OFET.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.