Abstract
AbstractCellulose nanocrystals (CNCs) are commercially available materials derived from cellulose, the most abundant biopolymer on our planet. Due largely to their high strength, high surface area‐to‐volume ratio, tailorable surface chemistry, and the abundance of biomass feedstocks with which to produce them, CNCs have attracted significant interest in applications spanning the paints and coatings, composites, packaging, and biomedical sectors. However, and perhaps most interestingly, CNCs will self‐assemble (or, as I've teased in the title, organize) to form highly ordered chiral nematic liquid crystal phases when concentrated in suspension. Upon complete solvent evaporation, this chiral nematic order is ‘locked’, yielding films with structural colour—colour arising not due to chemical pigments, but rather due to the physical structure of a material itself. In the pursuit of novel multi‐functional materials, research interest has shifted recently towards the incorporation of functional additives to form composite chiral nematic films. Along with introducing the basics of liquid crystals and self‐assembly, this review discusses the main approaches used in order to form CNC‐based composite films: co‐assembly, templating, and post‐processing, and highlights exceptional examples in each case. Finally, I give my uniquely Canadian perspective on the current status, future prospects, and major challenges associated with the development of CNC‐based chiral nematic composite materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.