Abstract

We study symmetry properties of the Einstein—Maxwell theory nonminimally coupled to the dilaton field. We consider a static case with pure electric (magnetic) Maxwell field and show that the resulting system becomes a nonlinear σ-model wich possesses a chiral representation. We construct the corresponding chiral matrix and establish a representation which is related to the pair of Ernst-like potentials. These potentials are used for separation of the symmetry group into the gauge and nongauge (charging) sectors. New variables, which linearize the action of charging symmetries, are also established; a solution generation technique based on the use of charging symmetries is formulated. This technique is used for generation of the electrically (magnetically) charged dilatonic fields from the static General Relativity ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.