Abstract

To study the influence of inducers of drug metabolism enzyme, beta-naphthoflavone (BNF) and dexamethasone (DEX), on the stereoselective metabolism of propafenone in the rat hepatic microsomes. Phase I metabolism of propafenone was studied using the microsomes induced by BNF and DEX and the non-induced microsome was used as the control. The enzymatic kinetics parameters of propafenone enantiomers were calculated by regress analysis of Eadie-Hofstee Plots. Propafenone enantiomer concentrations were assayed by a chiral HPLC. The metabolite of propafenone, N-desalkylpropafenone, was found after incubation of propafenone with the rat hepatic microsomes induced by BNF and DEX. In these two groups, the stereoselectivity favoring R(-) isomer was observed in metabolism at low substrate concentrations of racemic propafenone, but lost the stereoselectivity at high substrate concentrations. However, in control group, no stereoselectivity was observed. The enzyme kinetic parameters were: (1) K(m). R(-) 83+/-6, S(+) 94+/-7; BNF group: R(-) 105+/-6, S(+)128+/-14; DEX group: R(-) 86+/-11, S(+) 118+/-16; (2)V(max). R(-) 0.75+/-0.16, S(+) 0.72+/-0.07; BNF group: R(-) 1.04+/-0.15, S(+)1.07+/-14; DEX group: R(-) 0.93+/-0.06, S(+) 1.04+/-0.09; (3)Cl(int). R(-) 8.9+/-1.1, S(+) 7.6+/-0.7; BNF group: R(-) 9.9+/-0.9, S(+)8.3+/-0.7; DEX group: R(-) 10.9+/-0.8, S(+) 8.9+/-0.9. The enantiomeric differences in K(m) and Cl(int) were both significant, but not in V(max), in BNF and DEX group. Whereas enantiomeric differences in three parameters were all insignificant in control group. Furthermore, K(m) and V(max) were both significantly less than those in BNF or DEX group. In the rat liver microsome induced by DEX, nimodipine (NDP) decreased the stereoselectivity in propafenone metabolism at low substrate concentration. The inhibition of NDP on the metabolism of propafenone was stereoselective with R(-)-isomer being impaired more than S(+)-isomer. The inhibition constant (Ki) of S(+)- and R(-)-propafenone, calculated from Dixon plots, was 15.4 and 8.6 mg x L(-1), respectively. CYP1A subfamily(induced by BNF) and CYP3A4 (induced by DEX) have pronounced contribution to propafenone N-desalkylation which exhibited stereoselectivity depending on substrate concentration. The molecular base for this phenomenon is the stereoselectivity in affinity of substrate to the enzyme activity centers instead of at the catalyzing sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call