Abstract

Pyridine- and quinoline-stabilized silyl cations have been prepared, and their structure in condensed phases unambiguously assigned using 1H, 13C, 15N, 29Si, and 1H DOSY NMR as well as X-ray diffraction studies. Solid state structures thus show in both cases a stabilization of the cationic silicon center through an N-Si interaction and formation of a highly strained four-membered ring system. Chiral memory at the silicon atom in these heterocycle-stabilized silyl cations was also established, leading to various levels of selectivity depending on the nature of the heterocycle. Lowest energy conformations of the starting silanes obtained through DFT calculations, along with the isolation and characterization of the Si-centered chiral silyl cation intermediates, finally allowed to propose a plausible hypothesis as to the configurational stability of these silyl cations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.