Abstract
This work aims to examine the effect of self-assembly on the chiroptic responses of the achiral block copolymer (BCP) polystyrene-b-poly(ethylene oxide) (PS-b-PEO) associated with chiral luminophores, (R)- or (S)-1,1'-bi-2-naphthol ((R)- or (S)-BINOL), through hydrogen bonding. With the formation of a well-ordered helical phase (H*), significantly induced circular dichroism (ICD) signals for the PEO block in the mixture can be found. Most interestingly, a remarkable amplification with an extremely large dissymmetry factor of luminescence (glum) from 10-3 to 0.3 (i.e., induced circular polarized luminescence (iCPL) behavior) for the chiral BINOLs in the mixture can be achieved by the formation of the helical phase (H*) via mesochiral self-assembly. As a result, by taking advantage of BCP for mesochiral self-assembly, it is feasible to create a nanostructured monolith with substantial optical activities, offering promising applications in the design of chiroptic devices.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have