Abstract

AbstractA facile route to soft matter self‐powered bulk heterojunction photodiode detectors sensitive to the circular polarization state of light is shown based on the intrinsic excitonic circular dichroism of the photoactive layer blend. As light detecting materials, enantiopure semiconducting small molecular squaraine derivates of opposite handedness are employed. Via Mueller matrix ellipsometry, the circular dichroism is proven to be of H‐type excitonic nature and not originating from mesoscopic structural ordering. Within the green spectral range, the photodiodes convert circular polarized light into a handedness‐dependent photocurrent with a maximum dissymmetry factor of ±0.1 corresponding to 5% overall efficiency for the polarization discrimination under short circuit conditions. On the basis of transfer matrix optical simulations, it is rationalized that the optical dissymmetry fully translates into a photocurrent dissymmetry for ease of device design. Thereby, the photodiode's ability to efficiently distinguish between left and right circularly polarized light without the use of external optical elements and voltage bias is demonstrated. This allows a straightforward and sustainable future design of flexible, lightweight, and compact integrated platforms for chiroptical imaging and sensing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.