Abstract

A review of chiral effective theory (CET) is presented. CET is based on quantum chromodynamics (QCD) and describes strong interaction processes at low energies. It is proved that CET arises as a consequence of the spontaneous violation of chiral symmetry in QCD — the appearance of chiral-symmetry-violating vacuum condensates. The Goldstone theorem is proved for the case of QCD, and the existence of the octet of massless Goldstone bosons (π, K, η) is demonstrated in the limitof massless u, d and s quarks (or the existence of the triplet of massless pions in the limit mu, md → 0). It is shown that the same phenomenon — the appearance of quark condensate in QCD — which is responsible for the Goldstone bosons also gives rise to chiral-symmetry-violating massive baryons. The general form of the CET Lagrangian is derived. Examples of higher order corrections to tree diagrams in CET are considered. The Wess–Zumino term (i.e., the p4 term in the CET Lagrangian) is given. Low energy sum rules are presented. QCD and CET at finite temperature are discussed. In the CET framework, the T2 correction to quark condensate in QCD is calculated at finite temperature, and results including higher order temperature corrections are presented. These results indicate on a phase transition to occur at T ≈ 150–200 MeV in QCD. The mixing of current correlators in order of T2 is proved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.