Abstract

Cyclodextrin derivatives constitute a powerful class of auxiliary agents for the discrimination of apolar chiral substrates. Both host-guest inclusion phenomena and interactions with the derivatizing groups located on the surface of the macrocycle could drive the enantiodiscrimination; thus, it is important to understand the role that these processes play in the rational design of new chiral selectors. The purpose of this study is to compare via nuclear magnetic resonance (NMR) spectroscopy the efficiency of silylated-acetylated α-, β-, and γ-cyclodextrins in the chiral discrimination of 1,1,1,3,3-pentafluoro-2-(fluoromethoxy)-3-methoxypropane (compound B) and methyl 2-chloropropionate (MCP). NMR DOSY (Diffusion Ordered SpectroscopY) experiments were conducted for the determination of the bound molar fractions and the association constants, whereas ROESY (Rotating-frame Overhauser Enhancement SpectroscopY) measurements provided information on the hosts' conformation and on the interaction phenomena with the guests. Compound B, endowed with fluorinated moieties, is not deeply included due to attractive Si-F interactions occurring at the external surface of the cyclodextrins. Therefore, a low selectivity toward the size of cyclodextrin cavity is found. By contrast, enantiodiscrimination of MCP relies on the optimal fitting between the size of the guest and that of the cyclodextrin cavity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.