Abstract

Correlated ad-atom systems on the Si(111) surface have recently attracted an increased attention as strongly correlated systems with a rich phase diagram. We study these materials by a single band model on the triangular lattice including 1/r long-range interaction. Employing the recently proposed TRILEX method we find an unconventional superconducting phase of chiral d-wave symmetry in hole-doped systems. The superconductivity is driven simultaneously by both charge and spin fluctuations and is strongly enhanced by the long-range tail of the interaction. We provide an analysis of the relevant collective bosonic modes and explain how in triangular symmetry both charge and spin channels contribute to the Cooper-pairing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.