Abstract

We employ a model based on nucleonic and mesonic degrees of freedom to discuss the competition between isotropic and anisotropic phases in cold and dense matter. Assuming isotropy, the model exhibits a chiral phase transition which is of second order in the chiral limit and becomes a crossover in the case of a realistic pion mass. This observation crucially depends on the presence of the nucleonic vacuum contribution. Allowing for an anisotropic phase in the form of a chiral density wave can disrupt the smooth crossover. We identify the regions in the parameter space of the model where a chiral density wave is energetically preferred. A high-density reappearance of the chiral density wave with unphysical behavior, as seen in previous studies, is avoided by a suitable renormalization scheme. A nonzero pion mass tends to disfavor the anisotropic phase compared to the chiral limit and we find that, within our model, the chiral density wave is only realized for baryon densities of at least about 6 times nuclear saturation density. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.