Abstract

Chiral anomaly of Weyl magnons (WMs), featured by nontrivial band crossings at paired Weyl nodes (WNs) of opposite chirality, is investigated. It is shown that WMs can be realized in stacked honeycomb ferromagnets. Using the Aharonov-Casher effect that is about the interaction between magnetic moments and electric fields, the magnon motion in honeycomb layers can be quantized into magnonic Landau levels (MLLs). The zeroth MLL is chiral so that unidirectional WMs propagate in the perpendicular (to the layer) direction for a given WN under a magnetic field gradient from one WN to the other and change their chiralities, resulting in the magnonic chiral anomaly (MCA). A net magnon current carrying spin and heat through the zeroth MLL depends linearly on the magnetic field gradient and the electric field gradient in the ballistic transport.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call