Abstract

The objective of this work is to study the effect of strain gradient, electric field gradient, and magnetic field gradient on the potential and field distributions of multiferroic fibrous composites subjected to generalized anti-plane shear deformation. A detailed energy variational formulation with strain, strain gradient, electric field, electric field gradient, magnetic field, and magnetic field gradient as independent variables is provided, and the equilibrium equations with the complete boundary conditions are simultaneously determined. Three internal characteristic lengths of the underlying microstructure are introduced in the constitutive equations. The general solutions in cylindrical polar coordinates consisting of the modified Bessel functions of first and second kind are derived. One inclusion problem’s solution is also obtained. The derived solutions are applied to a $$\hbox {CoFe}_{2}\hbox {O}_{4}$$ -PZT-4 composite to demonstrate the effect of strain gradient, electric field gradient, and magnetic field gradient. Numerical results provide insights into the role of characteristic lengths on the potential and field distributions of a multiferroic fibrous composite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.