Abstract

Preparing Cd3As2, which is a three-dimensional (3D) Dirac semimetal in certain crystal orientation, on Si is highly desirable as such a sample may well be fully compatible with existing Si CMOS technology. However, there is a dearth of such a study regarding Cd3As2 films grown on Si showing the chiral anomaly. Here, for the first time, we report the novel preparation and fabrication technique of a Cd3As2 (112) film on a Si (111) substrate with a ZnTe (111) buffer layer which explicitly shows the chiral anomaly with a nontrivial Berry’s phase of π. Despite the Hall carrier density ( n3D≈ 9.42×1017 cm−3) of our Cd3As2 film, which is almost beyond the limit for the portents of a 3D Dirac semimetal to emerge, we observe large linear magnetoresistance in a perpendicular magnetic field and negative magnetoresistance in a parallel magnetic field. These results clearly demonstrate the chiral magnetic effect and 3D Dirac semimetallic behavior in our silicon-based Cd3As2 film. Our tailoring growth of Cd3As2 on a conventional substrate such as Si keeps the sample quality, while also achieving a low carrier concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.