Abstract
A common issue during drug design and development is the discovery of novel scaffolds for protein targets. On the one hand the chemical space of purchasable compounds is rather limited; on the other hand artificially generated molecules suffer from a grave lack of accessibility in practice. Therefore, we generated a novel virtual library of small molecules which are synthesizable from purchasable educts, called CHIPMUNK (CHemically feasible In silico Public Molecular UNiverse Knowledge base). Altogether, CHIPMUNK covers over 95 million compounds and encompasses regions of the chemical space that are not covered by existing databases. The coverage of CHIPMUNK exceeds the chemical space spanned by the Lipinski rule of five to foster the exploration of novel and difficult target classes. The analysis of the generated property space reveals that CHIPMUNK is well suited for the design of protein-protein interaction inhibitors (PPIIs). Furthermore, a recently developed structural clustering algorithm (StruClus) for big data was used to partition the sub-libraries into meaningful subsets and assist scientists to process the large amount of data. These clustered subsets also contain the target space based on ChEMBL data which was included during clustering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.