Abstract

We demonstrate construction and novel compound synthesis from a synthetic metabolic pathway consisting of a type III polyketide synthase (PKS) known as 1,3,6,8-tetrahydroxynaphthalene synthase (THNS) from Streptomyces coelicolor and soybean peroxidase (SBP) in a microfluidic platform. THNS immobilized to Ni-NTA agarose beads is prepacked into a microfluidic channel, while SBP is covalently attached to the walls of a second microfluidic channel precoated with a reactive poly(maleic anhydride) derivative. The result is a tandem, two-step biochip that enables the synthesis of novel polyketide derivatives. The first microchannel, consisting of THNS, results in the conversion of malonyl-CoA to flaviolin in yields up to 40% with a residence time of 6 min. This conversion is similar to that obtained in several-milliliter batch reactions after 2 h. Linking this microchannel to the SBP microchannel results in biflaviolin synthesis. During the course of this work, we discovered that the substrate specificity of THNS could be manipulated by simply changing the reaction pH. As a result, the starter acyl-CoA specificity can be broadened to yield a series of truncated pyrone products. When combined with variations in the ratio of acyl-CoA and malonyl-CoA (extender substrate) feed rates, high yields of the pyrone products could be achieved, which is further structurally diversified from self- and cross-coupling in the SBP microchannel. The ability to rapidly evaluate the effects of reaction conditions and synthetic multienzyme pathways on a microfludic platform provides a new paradigm for performing metabolic pathway engineering, namely, the reconstruction of pathways for use in new compound discovery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.