Abstract
Each type of classifier has its own advantages as well as certain shortcomings. In this paper, we take the advantages of the associative classifier and the Naïve Bayes Classifier to make up the shortcomings of each other, thus improving the accuracy of text classification. We will classify the training cases with the Naïve Bayes Classifier and set different confidence threshold values for different class association rules (CARs) to different classes by the obtained classification accuracy rate of the Naïve Bayes Classifier to the classes. Since the accuracy rates of all selected CARs of the class are higher than that obtained by the Naïve Bayes Classifier, we could further optimize the classification result through these selected CARs. Moreover, for those unclassified cases, we will classify them with the Naïve Bayes Classifier. The experimental results show that combining the advantages of these two different classifiers better classification result can be obtained than with a single classifier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.