Abstract
BackgroundChinese hamster ovary cell lines, also known as CHO cells, represent a large family of related, yet quite different, cell lines which are metabolic mutants derived from the original cell line, CHO-ori. Dihydrofolate reductase-deficient DXB-11 cell line, one of the first CHO derivatives, serves as the host cell line for the production of therapeutic proteins. It is generally assumed that DXB-11 is identical to DUKX or CHO-DUK cell lines, but, to our knowledge, DXB-11 karyotype has not been described yet.ResultsUsing differential staining approaches (G-, C-banding and Ag-staining), we presented DXB-11 karyotype and revealed that karyotypes of DXB-11 and CHO-DUK cells have a number of differences. Although the number of chromosomes is equal—20 in each cell line—DXB-11 has normal chromosomes of the 1st and 5th pairs as well as an intact chromosome 8. Besides, in DXB-11 line, chromosome der(Z9) includes the material of chromosomes X and 6, whereas in CHO-DUK it results from the translocation of chromosomes 1 and 6. Ag-positive nucleolar organizer regions were revealed in the long arms of chromosome del(4)(q11q12) and both chromosome 5 homologues, as well as in the short arms of chromosomes 8 and add(8)(q11). Only 19 from 112 (16.96%) DXB-11 cells display identical chromosome complement accepted as the main structural variant of karyotype. The karyotype heterogeneity of all the rest of cells (93, 83.04%) occurs due to clonal and nonclonal additional structural rearrangements of chromosomes. Estimation of the frequency of chromosome involvement in these rearrangements allowed us to reveal that chromosomes 9, der(X)t(X;3;4), del(2)(p21p23), del(2)(q11q22) /Z2, der(4) /Z7, add(6)(p11) /Z8 are the most stable, whereas mar2, probably der(10), is the most unstable chromosome. A comparative analysis of our own and literary data on CHO karyotypes allowed to designate conservative chromosomes, both normal and rearranged, that remain unchanged in different CHO cell lines, as well as variable chromosomes that determine the individuality of karyotypes of CHO derivatives.ConclusionDXB-11and CHO-DUK cell lines differ in karyotypes. The revealed differential instability of DXB-11 chromosomes is likely not incidental and results in karyotype heterogeneity of cell population.
Highlights
Chinese hamster ovary cell lines, known as CHO cells, represent a large family of related, yet quite different, cell lines which are metabolic mutants derived from the original cell line, CHO-ori
Chinese hamster ovary cell lines known as CHO cells represent a large family of related, but quite different cell lines which are metabolic mutants derived from the original cell line, CHO-ori [1,2,3], by cloning, selection or induced mutagenesis
In spite of limited numerical variability, DXB-11 cell line was characterized by chromosomal instability and karyotype heterogeneity
Summary
Chinese hamster ovary cell lines, known as CHO cells, represent a large family of related, yet quite different, cell lines which are metabolic mutants derived from the original cell line, CHO-ori. Dihydrofolate reductasedeficient DXB-11 cell line, one of the first CHO derivatives, serves as the host cell line for the production of therapeutic proteins. Chinese hamster ovary cell lines known as CHO cells represent a large family of related, but quite different cell lines which are metabolic mutants derived from the original cell line, CHO-ori [1,2,3], by cloning, selection or induced mutagenesis. Structural changes of the genome at the transgene integration site lead to loss of productivity of recombinant CHO-DG44 cells producing immunoglobulin G [9]. In recent years research has been focused on identifying the stable genome regions for targeted transgene integration
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.