Abstract

A method for the synthesis of chimeric oligonucleotides was developed to incorporate purine nucleobases and multiple triazole linkers in natural, phosphate-linked structures of RNA. A solution-phase synthesis method for triazole-linked RNA oligomers via copper-catalyzed azide-alkyne cycloaddition reaction was optimized and tolerated purine nucleobases and protecting groups for further transformations. Three TLRNA trinucleotides with 5'-protected hydroxy and 3'-phosphoramidite groups were prepared, and one congener with a representative sequence was subjected to automated, solid-phase phosphoramidite synthesis. The synthesis allowed the efficient preparation of 13-mer chimeric RNA oligonucleotides with two triazole linkers, ten phosphate linkers and purine/pyrimidine nucleobases. The chimeric oligonucleotide was found applicable to a cell-free translation system as mRNA and provided the genetic code for dipeptide production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call