Abstract
The purpose of this study is to prepare stimuli-responsive chimeric liposomes (i.e. hybrid polymer-lipid liposomes) containing functional copolymers and conduct aqueous solution studies in order to determine their properties and potential as drug-delivery nanocarriers. Two random copolymers, composed of the hydrophilic, pH and thermo-responsive 2-(dimethyl amino) ethyl methacrylate (DMAEMA) monomer and the hydrophobic stearyl methacrylate (SMA) monomer, were synthesized via free-radical polymerization and molecularly characterized using SEC, FTIR, and 1H-NMR. The synthesis was followed by aqueous solution studies, utilising dynamic light scattering (DLS) in order to determine their stimuli responsive self-assembly properties. The preparation of chimeric liposomes was mediated by thin film deposition and hydration, followed by aqueous solution studies via DLS, ζ-potential and fluorescence spectroscopy. The drug-loading studies include curcumin loading via a thin film deposition and hydration technique, while aqueous solution properties of the drug-loaded chimeric liposomes were determined utilizing DLS, and UV–Vis spectroscopy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have