Abstract

The current head Injury Assessment Reference Values (IARVs) for the child dummies are based in part on scaling adult and animal data and on reconstructions of real world accident scenarios. Reconstruction of well-documented accident scenarios provides critical data in the evaluation of proposed IARV values, but relatively few accidents are sufficiently documented to allow for accurate reconstructions. This reconstruction of a well documented fatal-fall involving a 23-month old child supplies additional data for IARV assessment. The videotaped fatal-fall resulted in a frontal head impact onto a carpet-covered cement floor. The child suffered an acute right temporal parietal subdural hematoma without skull fracture. The fall dynamics were reconstructed in the laboratory and the head linear and angular accelerations were quantified using the CRABI-18 Anthropomorphic Test Device (ATD). Peak linear acceleration was 125 ± 7 g (range 114–139), HIC15 was 335 ± 115 (Range 257–616), peak angular velocity was 57± 16 (Range 26–74), and peak angular acceleration was 32 ± 12 krad/s2 (Range 15–56). The results of the CRABI-18 fatal fall reconstruction were consistent with the linear and rotational tolerances reported in the literature. This study investigates the usefulness of the CRABI-18 anthropomorphic testing device in forensic investigations of child head injury and aids in the evaluation of proposed IARVs for head injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call